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Abstracl~. 

This is the second in a series of papers on the inherent power of bounded cooperative 
concurrency, whereby an automaton can be in some bounded number of states that 
cooperate in accepting the input. In this paper we deal with the level of pushdown 
automata. We are interested in differencies in power of expression and in discrepencies in 
succinctness between variants of pda's that incorporate nondeterminism, pure parallelism 
and bounded cooperative concurrency. In particular, our results provide further evidence 
for the general observation that the latter feature provides inherent exponential power, in 
both upper and lower bound senses, regardless of whether or not the two former features 
are also present. While we use the language of statecharts to capture these features, our 
results are extremely robust, and hold also for bounded versions of virtually all other 
concurrent languages. 

1. Introduction 

Classical models of computation,  such as Turing machines and various kinds of 
au tomata ,  have been enriched with existential and universal branching to capture 
parallelism. However, unlike the constructs used in the s tudy of real distributed 
processes and protocols, in these types of branching no cooperation takes place 
between the spawned processes, except when time comes to decide whether the 
input should be accepted. In Turing machines and pushdown automata ,  for ex- 
ample, this fact manifests itself in the totally separate tapes or pushdown stacks 
that  are assumed to be generated whenever branching (of either kind) takes place. 
Thus, branching essentially produces separate computations, the results of which 

tThis paper is based on part of the M.Sc. thesis of the first-listed author [Hi], supervised by the 
second-listed author. 
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are later combined to form the joint result. It would appear tha t  in order to 
capture real-world concurrency we would want  to allow a mechanism to be in 
more than one state at a time during a single computation, and to enable these 
states to cooperate in achieving a common goal. This approach, which one might 
call cooperative concurrency, is the dominating one in research on distributed sys- 
tems, and not the noncooperative concurrency of pure branching. Moreover, in the 
real world, the number of processors available for simultaneous work is bounded 
and cannot be assumed to grow as the size of the input grows. One machine of 
fixed size must  solve the algorithmic problem in question for a11 inputs. In con- 
trast,  existential and universal branching are unbounded - -  new processes can be 
spawned without limit as the computat ion proceeeds. In the sequel, we shall use 
E, A and C, respectively, to denote existential branching (nondeterminism), uni- 
versal branching (V-parallelism), and bounded cooperative concurrency (or simply 
bounded concurrency for short). 

In [DH], we have investigated the inherent power of bounded cooperative 
concurrency in the realm of finite automata,  over both finite and infinite words. 
The criterion for comparison was succinctness. One finding tha t  recurs in all the 
cases considered therein is tha t  the C feature gives rise to inherently exponential 
differences in power, in both  upper and lower bound senses, regardless of whether  
E and A are also available or not. 

To help describe the present work we survey some of the results of [DH]. 
(These results, as well as those of the present paper and some of those of [HRV], 
are motivated and summarized in a uniform fashion in [Ha3].) It  is well-known 
tha t  NFAs are exponentially more succinct than  DFAs, in the following upper and 
lower bound senses (see, e.g., [MF]): 

• Any NFA can be simulated by a DFA with at most an exponential growth 
in size. 

• There  is a (uniform) family of regular sets, Ln, for n > 0, such tha t  each 
L,~ is accepted by an NFA of size O(n) but the smallest DFA accepting it 
is of size at  least 2 n. 

The same is t rue of V-automata, namely, the dual machines, in which all 
branching is universal. It is also true that  AFAs, i.e., those that  combine bo~h types 
of branching, are exponentially more succinct than both NFAs and V-automata, 
and indeed are double-exponentially more succinct than DFAs (see [CKS]). These 
results also hold in both  the upper and lower bound senses described. Thus, in 
this framework, E and A are exponentially powerful features, independently of 
each other ( that  is, whether  or not the other is present), and, moreover, their 
power is additive: the two combined are double-exponentially more succinct than 
none. Taking a solid arrow to depict the presence of an upper and lower bound 
of one exponential, the bo t tom horizontal lines of Fig. 1 summarize these known 
facts, t 

t in  the figure, transitivity is assumed too; hence~ the line labelled 'two-exponentials'  that  would 



The idea in [DH] was to investigate the effect of introducing the C feature, via 
the use of statecharts [Ha2] as an extension of finite automata.  The first set of re- 
sults therein establishes the vertical lines and the top horizontal lines of Fig. 1, t as 
well as the implicit compound lines. Among other things, these include exponen- 
tial upper and lower bounds for simulating nondeterministic statecharts on NFAs, 
double-exponential bounds for simulating them on DFAs, and triple-exponential 
upper and lower bounds for simulating alternat/ng statecharts on DFAs. Thus, 
these parts of Fig. 1 show that bounded concurrency represents a third, separate, 
exponentially powerful feature. It is independent of conventional nondeterminism 
and parallelism, since the savings remain intact in the face of any combination of 
A and E, and is also additive with respect to them, by virtue of the double- and 
triple-exponential bounds along the compound lines. 

Stronger results are then obtained in [DH], considering the question of how C 
compares with A and E themselves. These results are summarized by the remain- 
ing lines of Fig. 1. Each of the four diagonal arrows denotes exponential upper 
and lower bounds for the simulation in the downward direction and polynomial 
(actually.. linear) bounds for the upward direction. In particular, nondeterministic 
statecharts are shown to be exponentially more succinct than AFAs, and the same 
holds when nonterminism is absent from both. Finally, the line between C and 
(E,A) represents upper and lower exponential bounds in both directions, meaning 
that  alternation and bounded concurrency can be simulated by each other with 
at most an exponential growth in size, and that,  in general, neither of these gaps 
can be reduced. These results show that  while bounded concurrency is actually 
more powerful than each of V-parallelism or nondeterminism taken alone, it is 
incompatible, in terms of expressive power, with the combination of both.* 

We should add that  all these results are extremely robust, in that  they are 
insensitive to the particular mechanism of cooperation adopted. In many of the 
lower bound proofs the main use of cooperation is merely to pass along carries in 
the process of counting in binary - -  an extremely simple form of cooperation. Con- 
sequently, the results do not depend on the choice of statecharts as the language 
for describing computations; they could have been phrased for bounded versions 
of standard models such as Petri nets [Re], CSP [Ho], CCS [Mi], or the concur- 
rent versions of standard programming languages such as Pascal or Prolog. As the 
reader will be able to see quite easily, this robustness carries over to the present 
work too. 

In this paper we report on the results of a similar investigation, in which 
the basic mechanism is that  of a pushdown automaton. Here, however, there are 
differencies in power of expression: for example, E-machines (i.e., nondeterminis- 

lead from ~(E,A) to 0 is omitted for clarity, despite the fact that it does not follow a priori. 
tThe single dot along these lines denotes one exponential gaps. 

*Similar results are obtained in [DH] for the case of infinite words, and in [Hi] for the case of 

finite languages and for the case of finite words over a one-letter alphabet. 



tic pda's) accept the context-flee languages, whereas, of course, 0-machines (i.e., 
dpda's) accept a strictly smaller set. Accordingly, in Section 3 we consider power 
of expression, and show that whatever combination of the E and A features is 
considered, the C feature adds nothing to the class of languages accepted. We 
then turn  to succinctness, with the goal of finding out exactly how powerful the 
three features are when used to accept sets of languages that  are common to all 
variants of the machines. We consider deterministic context-free languages and 
regular languages in Section 4 and finite languages in Section 5. 

When viewed together, our succintness results further confirm the general con- 
clusion reached in [DH, Ha3], namely, that  bounded concurrency provides inherent 
exponential power, regardless of whether or not E and/or  A are also present. The 
pushdown automata  case is particularly interesting since, in contrast to finite au- 
tomata,  where the E and A features are also of exponential power (as illustrated 
in Fig. 1), here E and A give rise to unlimited differences in succinctness, whereas 
the C feature stands fast as being inherently exponential in all cases. In [HRV] 
we provide yet more evidence for this general conclusion, by showing that  the C 
feature causes exponential differences in the time-complexity of deciding validity 
in a number of logics of programs. 

2. Preliminaries 

The size of context-flee grammars and pda's are defined in the usual way (see, 
for example, [Hr]), as are acceptance by empty stack or final state. T(A) is the set 
accepted by the pda A by final state, N(A) is the set accepted by empty stack, 
and L(A) is the set accepted by both final state and empty store simultaneously. 
There are polynomial translations between these acceptence criteria, so that  in the 
sequel we shall blur the distinctions between them. Often, the translations are in 
fact linear. Moreover, to simplify the exposition of our results we shall emphasis in 
all places only the difference between polynomial gaps and exponential or higher 
gaps, although in many cases the polynomials in question are really linear. We 
let L(G) be the language defined by the grammar G. The following results are 
adapted from [Hr]. 

Def in i t ion .  A pda A = (Q, E, F, 6, q0, Z0, F) is moderate if (qt, a) E 6(q, a, Z) 
implies lal ~ 2. 

P r o p o s i t i o n  1. There is a polynomial p, such that  for each context-flee 
grammar G of size n there is a pda A of size p(n), such that  L(G) = N(A). 

P r o p o s i t i o n  2. There is a polynomial p, such that  for each (deterministic) 
pda A of size n there is a moderate (deterministic) pda B of size p(n) that  is 
equivalent to A in whichever form of acceptance is being used. 

P r o p o s i t i o n  3. There is a polynomial p, such that  for each pda A of size n 
there is a context-free grammar G of size p(n) with L(G) = N(A). 



Proof .  Let A be a pda of size n. Simulate A by a moderate-pda A ~ of size 
polynomial in n, and then simulate A ~ by a polynomial-sized CF-grammar G, as 
shown, e.g., in [Hr, pp. 151-152]. /x 

P r o p o s i t i o n  4. There is a polynomial p, such that for each context-free 
grammar G of size n, there is a grammar G ~ of size p(n) in Chomsky normal form 
(CNF), such that L(G') = LCG). 

We now consider extensions of the basic model of pushdown automata, by 
adding the C feature. This can be done in many ways without influencing the re- 
sults of the paper. For example, we could have added pushdowns to bounded-token 
Petri nets [Re], to a bounded version of finite-state CSP or CCS programs [Ho, 
Mi], or to bounded versions of any of the standard kinds of parallel programming 
languages. As in [DH], we too shall use the statecharts of [Hall as the basis of our 
extension. The details of the language can be found, e.g., in [Hal, Ha2], and the 
way the E and A features are combined with the bounded concurrency of state- 
charts is described in [DH]. Here we consider a version of statechaxts that allows 
the standard operations on a pushdown stack to be present along the transitions 
between states. By convention, if more than one transition is to be taken in one 
step (by virtue of the machine being in more than one state at once) and if the 
stack operations called for by these transitions are contradictory (i.e., they ask for 
different sequences of symbols to be pushed), we agree that the machine immedi- 
ately stops and rejects the input. Thus, in the sequel, a C-pda is a deterministic 
pushdown statechart, an E-pda is a usual nondeterministic pda, an (E,A)-pda is 
an alternating pushdown automaton (see ILLS]), a 0-pda is a dpda, an (E,C)- 
pda is a nondeterministic pushdown statechart, an (E,A,C)-pda is an alternating 
pushdown statechart, etc. The size of these statecharts is defined in the obvious 
way (number of states + number of transitions + sum of lengths of the labels on 
transitions (including the stack operations)). 

Let ~ be any subset of (E,A,C}. We denote by ~-PDA the class of pda's en- 
riched with the ~ features, and by ~-LAN the set of languages accepted by the 
machines in the class ~-PDA. 

P r o p o s i t i o n  5. There is a polynomial p, such that for any (E,A)-pda A of 
size n there is an (E,A)-pda B of size p(n) with T(A)  = ~* - T (B) .  Moreover, A 
is an E-pda iff B is an A-pda. 

Ske tch  of proof.  Let A be an (E,A)-pda of size n. B is constructed by 
exchanging the accepting states with the non-accepting states, and the V-states 
with the 3-states. /~ 

Let C1, C2 be two classes of machines. 

Def ini t ion.  We write C1 ~ C2 (or C1 "" * C2, C1 ""7 C2, respectively), 
if there is a polynomial p, such that for any M1 E C1 of size n that accepts a 
deterministic language, there is an equivalent M2 C C2 of size no more than 2 p(n) 

(or 22~(") , 2 22p(~) , respectively). 



D e f i n i t i o n .  We write C1 > Cz (or C1 .. ~ C2, C1 ...* C2, respectively) if 
there is a family of deterministic languages Ln, for n > 0, and a polynomial p, 
such that  Ln is accepted by some M1 E CI of size p(f(n)) for some function f ,  

but the smallest M2 E C2 accepting it is at least of size 2 f(n) (or 22s¢~), 2221¢~} , 
respectively). 

D e f i n i t i o n .  We write C1 ~ C2 if for any recursive function g, there is 
a family of deterministic languages Ln, for n > 0, such that,  for each n, Ln is 
accepted by some M1 E C1 of size O (n), but  the smallest Mz E C2 accepting it is 
at least of size g(n). 

When a small f is added as a subscript to the arrows in these definitions, they 
are to be considered as applying to finite languages, rather than to deterministic 
ones. 

3. Results  on Expressive Power 

P r o p o s i t i o n  6. 

~-LAN = C-LAN = determinstic CFLs; 

E-LAN = (E,C)-LAN = CFLs; 

A-LAN = (A,C)-LAN = 2 E• -- CFLs; 

(E,A)-LAN = (E,A,C)-LAN = DEXPTIME.  

P r o o f .  The C feature adds nothing to the expressive power of any of the E 
and /o r  A variants of pda's, as shown in Prop. 10 of Section 4. The characterization 
of DEXPTIME appears in [CKS, LLS]. /k 

P r o p o s i t i o n  7. 0-LAN C (E-LAN f3 A-LAN ). 

P r o o f .  Clearly, 0-LAN _ (E-LAN N A-LAN ). To prove the inequality we ex- 
hibit an inherently nondeterministic CFL L such that  L = E* - L is also a CFL. 
Thus, by Prop. 5, L is accepted by an A-pda too. 

Let L be the inherently nondeterministic language {ww R I w E •a, b}*} (see 
[Hr, p. 390]). To show that  T = ~* - L is also a CFL, consider the grammar:  

s aSa  I bSb I aAb I I b 
A ~ a A ] b A ] A  A 

P r o p o s i t i o n  8. (E-LAN U A-LAN) C (E,A)-LAN. 

P r o o f .  Clearly, (E-LAN kJ A-LAN ) ___ (E,A)-LAN. We exhibit a language L 
that  is accepted by an (E,A)-pda, but is not a CFL or the complement of one. 
Define L = {a 2" I n > 0}. The (E,A)-pda for L is illustrated in Fig. 2. It pushes 



the first half of the input word onto the stack by guessing the middle. It then 
checks, using a V-state, if the length of the rest of the word is equal to the length 
of the stack, and repeats the whole process for the second half, recursively. 

i 

It is not too difficult to see that  neither L nor L is a CFL, by using simple 
pumping arguments, a 

Turning to one-letter alphabets, every context-free language L _ (a)* is reg- 
ular, by Parikh's  theorem [Pa]. From Prop. 5 and the closure of regular sets under 
completion, it follows that  every A-LAN language L C {a)* is also regular. (E,A)- 
LAN, on the other hand, contains one-letter languages that  are non-regular. 

P r o p o s i t i o n  9. There is a non-regular language (which is therefore non- 
context-tree) L C {a)* that  is accepted by an (E,A)-pda. 

P r o o f .  As in the previous proof, let L = (a  ~n I n > 0}. A 

4. Bounds for Deterministic and Regular Languages 

The results of this section are illustrated in Fig. 3. The text deals with deterministic 
languages, but  all the results hold for regular languages too, since the upper bounds 
obviously apply to regular languages too, and the example languages used for the 
lower bounds are all, in fact, regular. We first show that C can be eliminated at 
the expense of at most an exponential blowup. 

P r o p o s i t i o n  10. Let ~ be any subset of {E,A}. Then 

(~,C)-PDA , ~-PDA. 

P r o o f .  Let M be a (f ,C)-pda of size n. The proof uses a simple product 
construction, as in [DH]. A configuration of a conventional pda contains the input 
word, the state, the position of the head, and the contents of the stack. A config- 
uration of a (f ,C)-pda differs in that  instead of a single state it may be thought 
of as containing a subset of atomic-states. 

Accordingly, the states of the equivalent ~-pda M I are subsets of the atomic- 
states of M (numbering at most 2'~), whose transitions are defined according to 
those of M in the following fashion. The configuration Q~ follows Q~ in M riff Q2 
follows Q1 in M, where Q~ and Q~ contain the same input word, the same head 
position and the same stack as Q1, and Q2, respectively, and the states of Q~ and 
Q~ represent the same subsets of atomic-states as Q1 and Q2, respectively. The 
start state of M ~ and its accepting states are defined in a straightforward way as 
those representing the corresponding configurations in M. A 



Coro l l a ry  11. Let f be E or A. Then 

C-PDA * ~-PDA , 

C-PDA ) (E,A)-PDA, 

(~,C)-PDA ~ (E,A)-PDA. 

In contrast to the removal of the C feature, E and A cannot be removed with 
any limited blowup. We prove this even for the replacement of one by the other: 

P r o p o s i t i o n  12. 
A-PDA - ~  E-PDA and 

E-PDA --~ A-PDA. 

Proof .  Let g be a recursive function, and let M be a Turing machine that 
starts on a tape containing 1" and ends with a tape containing 1 g(n). Let the 
relevant computation sequence of M be q01 ~ }- a2 }- --- ~- ak }- qt l  g(~), where qt 
is the machine's final state. Let L ,  be the singleton {q0 in f ~ a 3  • • • ak R ~qt lg(n) ~},  
where ~R is the configuration a in reverse. (For simplicity we assume that k is 
even.) Then, an A-pda of size O(logn) accepts L~ as follows. It checks that each 
block follows the previous one according to the rules of M. This check is carried 
out using two V-branches to check the even numbered blocks in parallel with the 
odd numbered ones, and each block is pushed on the stack, with the adjacent block 
being checked against it for complience. This part of the A-pda is of constant size. 
In parallel, the machine verifies that there are n l 's in the first block with a 0-pda 
component of size O(log n), as described in the proof of Prop. 14. (There we verify 
2 n occurences of 1 with a 0-pda of size O(n).) 

In contrast, the smallest CNF-grammar that generates L,~ must contain at 
least log(g(n)) variables. Otherwise, we could generate more words, by pumping 
the derivation-tree of the single w E L, .  Thus, by Prop.  3, the size of the smallest 
E-pda accepting Ln must be polynomially related to log(g(n)). Carrying out the 
construction for a function gt that is related to g in a similarly polynomial manner 
concludes the proof. 

For the second case, let Ln = E* - L~. The result then follows from Prop. 
5. /k 

Coro l l a ry  13. Let f be A or E, and let each of # and v be C or 0. Then 

(E,A,#)-PDA ~ (~,V)-PDA, 

(~,#)-PDA --~ ({E,A}- f, //)-PDA , 

(E,A)-PDA ~ 0-PDA, and 

f-PDA ~ 0-PDA. 



In order to establish the exponential lower bounds represented in the three 
front downward vertical lines of Fig. 3, it suffices to establish the exponential lower 
bounds for the two diagonals representing the simulation of a C-pda by an E-pda 
and an A-pda: 

P r o p o s i t i o n  14. Let ~ be E or A. Then 

C-PDA ~ ~ ~ - P D A .  

Proof .  Let Ln = {12"}. There is a @-pda M that uses n + 1 stack-symbols, 
s0 , . . . , sn ,  and accepts L~. First, it pushes 8~ onto the stack. Subsequently, if it 
sees si, ~ _> 1, at the top of the stack it replaces it by s~-lsi-1. This continues until 
M sees s0 at the top of the stack, at which time it pops so and reads one character 
in the input-word. When the stack is empty, all 2 n characters of the input-word 
have been read. 

We can now exhibit a C-pda of size O(log(n)) that does the same. It uses 
only two stack-symbols a and b, encoding si by aib. Identifying aib at the top of 
the stack, popping it off and pushing two sequences of the form ai-lb instead, can 
be carried out using the ability of the statecharts to count up to n with O(log(n)) 
states [DH]. 

In order to show that the smallest E-pda accepting L~ must be of size poly- 
nomially related to n (i.e., one of the two is polynomial in the other), it suffices to 
show th.at the smallest CNF-grammar generating it is at least of size n; see Prop. 
3. Indeed, the smallest CNF grammar that generates Ln must contain at least n 
non-terminals. Otherwise, in the derivation-tree of the word 12'` there would be 
a path of length at least n, which would then have to contain two occurrences of 
some nonterminal. We could then apply a pumping argument to generate other 
words that are not in the language. 

For the case of ~ = A, let L,~ = ~* - L~. A C-pda accepting Ln is similar 
to the previous one for Ln. However, the size of the smallest A-pda accepting itt 
must be polynomially related to n, by Prop. 5. A 

C o r o l l a r y  15. Let ~ be E, A or 0. Then 

(~ ,C) -PDA ~ ~-PDA . 

We conjecture that the exponential lower bounds apply not only to the re- 
placement of C by E or A, but also to the replacement of C by both E and A, as 
was proved in [Hi] for finite automata (see [DH]): 

Conjecture 16. C-PDA ~ ( E , A ) - P D A .  

fThis is an example of a case in which we blur the distinction between acceptance by empty 

stack and by final state. The differences have no effect on the results. 



]0 

The example that prompted us to make this conjecture is the language 

L,~ = {w#wl  ]w C {0, 1} ~, wl E {0, 1, #}*, w appears in wl exactly 2 n times} 

On the one hand there is a linear-sized C-pda accepting Ln. It keeps the first w in 
n orthogonal yes/no components for comparison with subsequent words, and uses 
a counter of size O(n) to count the number of subwords equal to w. (Note that 
the stack is not used at all.) On the other hand, we conjecture that any (E,A)- 
pda accepting Ln must be of exponential size. Here is why. M has to compare 
and count the occurrences of w along a single path, and, since E and A have the 
effect of splitting the computation into separate paths, it would appear that these 
features cannot help in reducing the size. As to exploiting the stack, if M uses it 
for either comparing or counting, it appears that the other of these tasks cannot 
be supported at the same time by the stack unless 2 ~ stack-symbols or 2 ~ states 
are used. 

If the conjecture is true, then obviously if ~ is E, A or (E,A), we also have: 

(~, C)-PDA .~ (F,,A)-PDA. 

5. Bounds for Finite Languages 

The results of this section are illustrated in Fig. 4. 

The exponential upper bounds for simulating (C,~}-pda's by ~-pda's clearly 
apply to finite languages too. However, nondeterminism can be eliminated with a 
double-exponential blowup, so that the gap between E and 0 is not unlimited, as 
it was in the case of deterministic languages. To establish this we first show how 
to replace E by C with an exponential blowup?: 

P r o p o s i t i o n  17. 
E-PDA ~/ C-PDA.  

Proof .  Let M be an E-pda of size n. Without loss of generality, assume that 
M is moderate. The stack can expand up to the number of transition rules of M 
(which is less than n), otherwise some rule would be used at least twice, which 
would cause M to accept an infinite number of words. 

From M we can obtain an (E,C)-finite-automatoI1 M ~ by adding orthogonal 
state components for simulating the contents of the stack, and another compo- 
nent describing the height of the stack at any given moment, and changing the 

?Recall the use of an f subscript on the arrows, indicating finite languages. 



11 

transitions accordingly. M I is of size polynomial in n. We now simulate M t by a 
C-automaton of exponential size, by removing the nondeterminism as in [DH]. /~ 

C o r o l l a r y  18. Let ~ be 0 or C. Then 

(F,,~)-PDA "" >y ~-PDA. 

(E,~)-PDA "" ,f (A,~)-PDA. 

C o r o l l a r y  19. Let ~ be 0 or A. Then 

(E,C)-PDA "">f ~-PDA. 

In contrast to the double-exponential transition from E to A, the reverse 
transition is of unlimited complexity: 

P r o p o s i t i o n  20. 
A-PDA ---~.f E-PDA. 

P r o o f .  The proof is the same as the analogous proof in Prop. 12, since the 
language 

L~ : {q01r~2R~.-. aR~qll g(r~)~} 

used therein is obviously finite. (In contrast, when simulating an E-pda by an 
A-pda in Prop. 12 we used the complement, Ln'  which is not finite.) ~, 

C o r o l l a r y  21. Let ~1 be 0 or C, and let ~2 be any subset of {E,C}. Then 

(A, ~I)-PDA - ~ f  ~2-PDA . 

It is of particular interest that,  although nondeterminism can be eliminated 
with a limited blowup (Corollary 18), this is not true in the presence of the A 
feature: 

P r o p o s i t i o n  22. 
(E,A)-PDA - -~f  A-PDA. 

P r o o f .  Let g be any recursive function. Let T be a Turing machine that,  for 
each n > 0, computes g(n) according to the computation sequence represented by 
the following word: 

r~ R 

where ql is the machine's final state. Let 

L .  = {~ lSw25w31  for ~ < i < a, Iw~l < I~'-I, w~ = ~,,~ or '~3 = , ~ . , a n d  w2 # ~ , J  

U ( " 1 ~ " ~  I I"~t -< 21'~-f fo~ i =  ~,2,  "1 = ~ .  or , .~ = ,~,~.} 
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We now construct a small (E,A)-pda M that  accepts Ln. M guesses nondeter- 
ministically whether  the input-word w contains one '$' symbol or two. Say it has 
decided the latter, so that  the input word should be w = wl$w2$ws. M now 
guesses which of wl or w3 must equal an.  Say it decides wl.  It then verifies the  
equality wl = a , ,  using parallelism to check that  each pair of blocks separated 
by ~'s in fact represents two successive configurations of the Turing machine T, 
laid back to back, and it verifies the inequality w2 # an,  using nondeterminism 
to find a pair of such blocks that  do not thus represent successive configurations. 
Both these checks can be carried out with an (E,A)-pda of constant  size, using the 
stack to arrive at  the corresponding point in the second of the two blocks being 
checked. We also have to check, in parallel to the verification of wl = an,  that  
the initial sequence of l ' s  is of length n. This is carried out by a deterministic 
component  of logarithmic size, as in the proofs of Props. 12 and 14. In parallel to 
these activities, we use the stack to verify that  IT21, lwsl < la,~l. This is done by 
pushing wl,  which is really just  an ,  onto the stack, and then comparing its length 
to the lengths of w2 and ws, in parallel. The size of this (E,A)-pda component  is 
also constant.  Hence, the total size of M is only O(log n). 

We now show that  the smallest A-pda accepting Ln must be polynomially 
related to log(g(n)). By Props. 3-5, it suffices to show that  there cannot  be a 
CNF grammar  G generating L ,  with less than log(g(n))/2 variables. Indeed, let 
k(G) be the constant from the iteration theorem (see, e.g., [Hr, p. 186]). We have 
k(G) < g(n). Let w = a,~$an$an = wl$w2$ws e Ln, and let us mark the set 
of positions of w2 in w. Obviously, Iw~l = lan] > g(n) >_ k(G). Hence, by the 
theorem, there is a partit ion v l , . . . , v 5  of w such that:  Vi > 0, vlvi2v3vi4v s E Ln, 
where v2 ¢ A or v4 ¢ A, and is taken entirely from w2. Assume it is v2. If v4 is 
empty, or if it is not  empty  and is taken entirely from w2, then in w ~ . ~  ?jl?32?)3V4Vb,0 0 
we have wx = w3 -- an ,  w2 ~ an,  and ]w2t < ]anl. Thus w' e Ln. Therefore, 
w ~ ~ Ln, which is a contradiction. If v4 ¢ 3. and is taken entirely from w3, then in 
W ! = 'olvOv3vOv5 we have wl = an, w~ # an, w3 # an, and ]w2], ]w3] < tan]. Thus 
w ~ E Ln again. Finally, if v4 contains a '$', then w I = VlV°vsv°v s contains only 
one '$'. Thus w'  = wl$w2, where wl = an  and iw~l < 2 i a ,  I. Therefore, w' E Ln, 
which, once again, is a contradiction. £x 

C o r o l l a r y  23. Let ~x and ~2 be either C or 9. Then  

(E,A,~I)-PDA - -~y  (A,~2)-PDA. 

Here, too, we have exponential lower bounds on replacing C by E or A, and 
the proof is a finitary version of the proof of the analogous Prop. 14: 

P r o p o s i t i o n  24. Let ~ be E or A. Then 

C - P D A  ..... . >? ~ - P D A .  

P r o o f .  Let Ln = {1 k I k _< 2n}. The C-pda accepting Ln is similar to that  
of the proof of Prop. 14, except for the final states. All the states will be final, 
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except one "sink" state, that will be reached if the stack empties before the entire 
input-word has been read. 

In contrast, we now show that any CNF grammar that generates L,~ or Ln 
contains at least n variables. By Props. 3-5, this will complete the proof. 

Assume that there is such a CNF grammar with less than n variables. Then in 
the derivation tree of 12" (or 12"+1 , respectively) in Ln (or Ln, respectively), there 
would be a path of length at least n. Thus, this path would contain some variable 
appearing at least twice, and we could pump the derivation-tree of 12", accepting 
other words that are not in Ln. Similarly, we could pump-out the derivation tree 
of 12"+1 in order to get a smaller word which is not in L---~. LX 

Coro l l a ry  25. Let ~ be E, A or 9. Then 

(~,C)-PDA . ,] ~-PDA. 

As in the previous section, we have the following conjecture: 

C o n j e c t u r e  26. 
C-PDA . >$ (E,A)-PDA. 

Here now is a lower bound that establishes the tightness of the upper bounds 
of Prop. 17 and Corollaries 18 and 19: 

P r o p o s i t i o n  27. 
(E,C)-PDA ...,S A-PDA. 

Proof .  Let 

Ln = {w t w E {O,I,$}*, and e i t h e r i w i < 4 n + 3 o r  

(w = wl$w2$w3$w4, IT] = 4n + 3, [wl # w2 or w2 # w3 or ws # W4])} 

We shall first exhibit an (E,C)-pda M of size O(log log n) that accepts Ln. By 
the proof of Prop. 14 we can count up to n with a C-pda of size O (log log n). Thus, 
a C-pda of size O(loglogn) can check if IT[ = 4n + 3 or Iwl < 4n + 3. To check 
the inequalities in the former case, M uses nondeterminsm to guess the offending 
bit, and then uses the O(log log n) counting ability to reach the corresponding bit 
in the next word and check complience (see [DH]). This is done in parallel to the 
equality check, IwI = 4n + 3. 

In contrast, we now show that any CNF-grammar that generates Ln must 
contain at least 2 n variables. As before, the desired result will follow from Props. 
3-5. 

Assume that G is a CNF-grammar for L~, with less than 2 n variables. Let 
T1, T .  • .. 2 be the derivation-trees of the 2 n words in the set: 

A,~ = {wl$w2$w3$w4 I wi C {O, 1}", f o r l < i < 4 ,  a n d w l  = w 2 = w 3 = w 4 } .  
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Notice that  An C Ln. Since G is in Chomsky normal form, each node of Ti, 
1 < i < 2 n, splits into two nodes at most. Assume the root S splits into A and B. 
If A (or B) generates a part  of Wl (or w4), but  not all of it, we refer to B (or A) 
as a root, and continue recursively until, for the first time, we reach a variable V1 
that  splits into V2 and Vs so that  V2 (or Vs) generates the whole of w2 (or ws) and 
do not generate any character  from w4 (or wl). Thus, each tree Ti, 1 < i < 2 n, 
has a least-common-ancestor of w2 or ws, which does not generate any character  
of w4 or wl,  respectively. We denote these nodes by B~, 1 < i < 2 n, and the words 
generated from them by w(B¢), 1 < i < 2 '~. Since there are less than 2 '~ variables in 
G, there must  exist 1 _< i, j _< 2 '~, i ¢ j ,  such that ,  B~ = B i. If Iw(Bi)l < Iw(Bj)I, 
then by replacing w(Bj) by w(Bi) in the word wj$wi$wi$wi, the g rammar  would 
generate this new word, which is of length less than 4n + 3, and is thus not in L~ 
(since it is in Ln). If the lengths of w(Bi) and w(Bi) are equal but  the positions 
of the '$' in them are not, then by exchanging them we also obtain words that  are 
not in L--~. Otherwise, if Iw(Bi)] = Iw(Bj)l and the positions of the '$' in them are 
equal, then, by replacing w(Bi) by w(Bi) in wi$wj$wi$wj, we obtain either the 
word wj$w~$wi$w '~ or the word w'$wi$w"$wj, with w', w" E {0,1} ~ (depending 
on wMch of w2 or w~ is generated by Bj in wj$wjSwj$wj), both of which are not 
in Ln. A 

C o r o l l a r y  28. Let f l  be C or 0 and ~2 be A or 0. Then 

(E,C)-PDA 
(E, fl)-PDA 

E-PDA 

... > f 0-PDA , 
• . ' f  (~1, ~2)-PDA, 

. >f (C, ~2)-PDA . 

6. Conclusion 

As mentioned in the introduction, our results provide further evidence of the 
inherent exponential power of bounded cooperative concurrency (see [Ha3]). As 
shown, the C feature retains its exponential power in all cases we have considered 
on the pushdown au tomata  level, although E and A are much more powerful. In 
fact, one might argue tha t  E and A are ~oo powerful as features for modelling 
parallelism in pushdown automata.  They capture more languages than the basic 
version of deterministic machines, and provide unlimited (and one might add, 
unreasonable) power of succinctness when restricted to the class of deterministic 
languages. The situation for finite languages is less symmetric,  and somewhat more 
difficult, as shown in Section 5. 

We plan to carry out a similar investigation of pushdown au tomata  on infinite 
words and on trees. 
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(alternating 
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E,C--J~~ . 1 ~  ,c 

(V-automaton) 
{NFA) 

(DFA) 

Figure I. Results for finite automata (see [DH]) 
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F i g u r e  2. An (E,A)-pda for L -- {a 2~ J r~ > O} 
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(alternating 
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statechart) 
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(dpda) 

Figure 3. Summary of results for deterministic and regular languages 
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Figure 4. Summary of results for finite languages 


