
On the P o w e r of B o u n d e d C o n c u r r e n c y II"
The P u s h d o w n A u t o m a t a Level t

Tirza Hirst

Dept. of Mathematics & Computer Science
Bar-flan University, Ramat Gan, Israel

and

David Harelt

Dept. of Applied Mathematics & Computer Science
The Weizmann Institute of Science, Rehovot 76100, Israel

Abstracl~.

This is the second in a series of papers on the inherent power of bounded cooperative
concurrency, whereby an automaton can be in some bounded number of states that
cooperate in accepting the input. In this paper we deal with the level of pushdown
automata. We are interested in differencies in power of expression and in discrepencies in
succinctness between variants of pda's that incorporate nondeterminism, pure parallelism
and bounded cooperative concurrency. In particular, our results provide further evidence
for the general observation that the latter feature provides inherent exponential power, in
both upper and lower bound senses, regardless of whether or not the two former features
are also present. While we use the language of statecharts to capture these features, our
results are extremely robust, and hold also for bounded versions of virtually all other
concurrent languages.

1. Introduction

Classical models of computation, such as Turing machines and various kinds of
au tomata , have been enriched with existential and universal branching to capture
parallelism. However, unlike the constructs used in the s tudy of real distributed
processes and protocols, in these types of branching no cooperation takes place
between the spawned processes, except when time comes to decide whether the
input should be accepted. In Turing machines and pushdown automata , for ex-
ample, this fact manifests itself in the totally separate tapes or pushdown stacks
that are assumed to be generated whenever branching (of either kind) takes place.
Thus, branching essentially produces separate computations, the results of which

tThis paper is based on part of the M.Sc. thesis of the first-listed author [Hi], supervised by the
second-listed author.

SThis author's research was supported in par~ by a grant from the Gutwirth Foundation.

are later combined to form the joint result. It would appear tha t in order to
capture real-world concurrency we would want to allow a mechanism to be in
more than one state at a time during a single computation, and to enable these
states to cooperate in achieving a common goal. This approach, which one might
call cooperative concurrency, is the dominating one in research on distributed sys-
tems, and not the noncooperative concurrency of pure branching. Moreover, in the
real world, the number of processors available for simultaneous work is bounded
and cannot be assumed to grow as the size of the input grows. One machine of
fixed size must solve the algorithmic problem in question for a11 inputs. In con-
trast, existential and universal branching are unbounded - - new processes can be
spawned without limit as the computat ion proceeeds. In the sequel, we shall use
E, A and C, respectively, to denote existential branching (nondeterminism), uni-
versal branching (V-parallelism), and bounded cooperative concurrency (or simply
bounded concurrency for short).

In [DH], we have investigated the inherent power of bounded cooperative
concurrency in the realm of finite automata, over both finite and infinite words.
The criterion for comparison was succinctness. One finding tha t recurs in all the
cases considered therein is tha t the C feature gives rise to inherently exponential
differences in power, in both upper and lower bound senses, regardless of whether
E and A are also available or not.

To help describe the present work we survey some of the results of [DH].
(These results, as well as those of the present paper and some of those of [HRV],
are motivated and summarized in a uniform fashion in [Ha3].) It is well-known
tha t NFAs are exponentially more succinct than DFAs, in the following upper and
lower bound senses (see, e.g., [MF]):

• Any NFA can be simulated by a DFA with at most an exponential growth
in size.

• There is a (uniform) family of regular sets, Ln, for n > 0, such tha t each
L,~ is accepted by an NFA of size O(n) but the smallest DFA accepting it
is of size at least 2 n.

The same is t rue of V-automata, namely, the dual machines, in which all
branching is universal. It is also true that AFAs, i.e., those that combine bo~h types
of branching, are exponentially more succinct than both NFAs and V-automata,
and indeed are double-exponentially more succinct than DFAs (see [CKS]). These
results also hold in both the upper and lower bound senses described. Thus, in
this framework, E and A are exponentially powerful features, independently of
each other (that is, whether or not the other is present), and, moreover, their
power is additive: the two combined are double-exponentially more succinct than
none. Taking a solid arrow to depict the presence of an upper and lower bound
of one exponential, the bo t tom horizontal lines of Fig. 1 summarize these known
facts, t

t in the figure, transitivity is assumed too; hence~ the line labelled 'two-exponentials' that would

The idea in [DH] was to investigate the effect of introducing the C feature, via
the use of statecharts [Ha2] as an extension of finite automata. The first set of re-
sults therein establishes the vertical lines and the top horizontal lines of Fig. 1, t as
well as the implicit compound lines. Among other things, these include exponen-
tial upper and lower bounds for simulating nondeterministic statecharts on NFAs,
double-exponential bounds for simulating them on DFAs, and triple-exponential
upper and lower bounds for simulating alternat/ng statecharts on DFAs. Thus,
these parts of Fig. 1 show that bounded concurrency represents a third, separate,
exponentially powerful feature. It is independent of conventional nondeterminism
and parallelism, since the savings remain intact in the face of any combination of
A and E, and is also additive with respect to them, by virtue of the double- and
triple-exponential bounds along the compound lines.

Stronger results are then obtained in [DH], considering the question of how C
compares with A and E themselves. These results are summarized by the remain-
ing lines of Fig. 1. Each of the four diagonal arrows denotes exponential upper
and lower bounds for the simulation in the downward direction and polynomial
(actually.. linear) bounds for the upward direction. In particular, nondeterministic
statecharts are shown to be exponentially more succinct than AFAs, and the same
holds when nonterminism is absent from both. Finally, the line between C and
(E,A) represents upper and lower exponential bounds in both directions, meaning
that alternation and bounded concurrency can be simulated by each other with
at most an exponential growth in size, and that, in general, neither of these gaps
can be reduced. These results show that while bounded concurrency is actually
more powerful than each of V-parallelism or nondeterminism taken alone, it is
incompatible, in terms of expressive power, with the combination of both.*

We should add that all these results are extremely robust, in that they are
insensitive to the particular mechanism of cooperation adopted. In many of the
lower bound proofs the main use of cooperation is merely to pass along carries in
the process of counting in binary - - an extremely simple form of cooperation. Con-
sequently, the results do not depend on the choice of statecharts as the language
for describing computations; they could have been phrased for bounded versions
of standard models such as Petri nets [Re], CSP [Ho], CCS [Mi], or the concur-
rent versions of standard programming languages such as Pascal or Prolog. As the
reader will be able to see quite easily, this robustness carries over to the present
work too.

In this paper we report on the results of a similar investigation, in which
the basic mechanism is that of a pushdown automaton. Here, however, there are
differencies in power of expression: for example, E-machines (i.e., nondeterminis-

lead from ~(E,A) to 0 is omitted for clarity, despite the fact that it does not follow a priori.
tThe single dot along these lines denotes one exponential gaps.

*Similar results are obtained in [DH] for the case of infinite words, and in [Hi] for the case of

finite languages and for the case of finite words over a one-letter alphabet.

tic pda's) accept the context-flee languages, whereas, of course, 0-machines (i.e.,
dpda's) accept a strictly smaller set. Accordingly, in Section 3 we consider power
of expression, and show that whatever combination of the E and A features is
considered, the C feature adds nothing to the class of languages accepted. We
then turn to succinctness, with the goal of finding out exactly how powerful the
three features are when used to accept sets of languages that are common to all
variants of the machines. We consider deterministic context-free languages and
regular languages in Section 4 and finite languages in Section 5.

When viewed together, our succintness results further confirm the general con-
clusion reached in [DH, Ha3], namely, that bounded concurrency provides inherent
exponential power, regardless of whether or not E and/or A are also present. The
pushdown automata case is particularly interesting since, in contrast to finite au-
tomata, where the E and A features are also of exponential power (as illustrated
in Fig. 1), here E and A give rise to unlimited differences in succinctness, whereas
the C feature stands fast as being inherently exponential in all cases. In [HRV]
we provide yet more evidence for this general conclusion, by showing that the C
feature causes exponential differences in the time-complexity of deciding validity
in a number of logics of programs.

2. Preliminaries

The size of context-flee grammars and pda's are defined in the usual way (see,
for example, [Hr]), as are acceptance by empty stack or final state. T(A) is the set
accepted by the pda A by final state, N(A) is the set accepted by empty stack,
and L(A) is the set accepted by both final state and empty store simultaneously.
There are polynomial translations between these acceptence criteria, so that in the
sequel we shall blur the distinctions between them. Often, the translations are in
fact linear. Moreover, to simplify the exposition of our results we shall emphasis in
all places only the difference between polynomial gaps and exponential or higher
gaps, although in many cases the polynomials in question are really linear. We
let L(G) be the language defined by the grammar G. The following results are
adapted from [Hr].

Def in i t ion . A pda A = (Q, E, F, 6, q0, Z0, F) is moderate if (qt, a) E 6(q, a, Z)
implies lal ~ 2.

P r o p o s i t i o n 1. There is a polynomial p, such that for each context-flee
grammar G of size n there is a pda A of size p(n), such that L(G) = N(A).

P r o p o s i t i o n 2. There is a polynomial p, such that for each (deterministic)
pda A of size n there is a moderate (deterministic) pda B of size p(n) that is
equivalent to A in whichever form of acceptance is being used.

P r o p o s i t i o n 3. There is a polynomial p, such that for each pda A of size n
there is a context-free grammar G of size p(n) with L(G) = N(A).

Proof . Let A be a pda of size n. Simulate A by a moderate-pda A ~ of size
polynomial in n, and then simulate A ~ by a polynomial-sized CF-grammar G, as
shown, e.g., in [Hr, pp. 151-152]. /x

P r o p o s i t i o n 4. There is a polynomial p, such that for each context-free
grammar G of size n, there is a grammar G ~ of size p(n) in Chomsky normal form
(CNF), such that L(G') = LCG).

We now consider extensions of the basic model of pushdown automata, by
adding the C feature. This can be done in many ways without influencing the re-
sults of the paper. For example, we could have added pushdowns to bounded-token
Petri nets [Re], to a bounded version of finite-state CSP or CCS programs [Ho,
Mi], or to bounded versions of any of the standard kinds of parallel programming
languages. As in [DH], we too shall use the statecharts of [Hall as the basis of our
extension. The details of the language can be found, e.g., in [Hal, Ha2], and the
way the E and A features are combined with the bounded concurrency of state-
charts is described in [DH]. Here we consider a version of statechaxts that allows
the standard operations on a pushdown stack to be present along the transitions
between states. By convention, if more than one transition is to be taken in one
step (by virtue of the machine being in more than one state at once) and if the
stack operations called for by these transitions are contradictory (i.e., they ask for
different sequences of symbols to be pushed), we agree that the machine immedi-
ately stops and rejects the input. Thus, in the sequel, a C-pda is a deterministic
pushdown statechart, an E-pda is a usual nondeterministic pda, an (E,A)-pda is
an alternating pushdown automaton (see ILLS]), a 0-pda is a dpda, an (E,C)-
pda is a nondeterministic pushdown statechart, an (E,A,C)-pda is an alternating
pushdown statechart, etc. The size of these statecharts is defined in the obvious
way (number of states + number of transitions + sum of lengths of the labels on
transitions (including the stack operations)).

Let ~ be any subset of (E,A,C}. We denote by ~-PDA the class of pda's en-
riched with the ~ features, and by ~-LAN the set of languages accepted by the
machines in the class ~-PDA.

P r o p o s i t i o n 5. There is a polynomial p, such that for any (E,A)-pda A of
size n there is an (E,A)-pda B of size p(n) with T(A) = ~* - T (B) . Moreover, A
is an E-pda iff B is an A-pda.

Ske tch of proof. Let A be an (E,A)-pda of size n. B is constructed by
exchanging the accepting states with the non-accepting states, and the V-states
with the 3-states. /~

Let C1, C2 be two classes of machines.

Def ini t ion. We write C1 ~ C2 (or C1 "" * C2, C1 ""7 C2, respectively),
if there is a polynomial p, such that for any M1 E C1 of size n that accepts a
deterministic language, there is an equivalent M2 C C2 of size no more than 2 p(n)

(or 22~(") , 2 22p(~) , respectively).

D e f i n i t i o n . We write C1 > Cz (or C1 .. ~ C2, C1 ...* C2, respectively) if
there is a family of deterministic languages Ln, for n > 0, and a polynomial p,
such that Ln is accepted by some M1 E CI of size p(f(n)) for some function f ,

but the smallest M2 E C2 accepting it is at least of size 2 f(n) (or 22s¢~), 2221¢~} ,
respectively).

D e f i n i t i o n . We write C1 ~ C2 if for any recursive function g, there is
a family of deterministic languages Ln, for n > 0, such that, for each n, Ln is
accepted by some M1 E C1 of size O (n), but the smallest Mz E C2 accepting it is
at least of size g(n).

When a small f is added as a subscript to the arrows in these definitions, they
are to be considered as applying to finite languages, rather than to deterministic
ones.

3. Results on Expressive Power

P r o p o s i t i o n 6.

~-LAN = C-LAN = determinstic CFLs;

E-LAN = (E,C)-LAN = CFLs;

A-LAN = (A,C)-LAN = 2 E• -- CFLs;

(E,A)-LAN = (E,A,C)-LAN = DEXPTIME.

P r o o f . The C feature adds nothing to the expressive power of any of the E
and /o r A variants of pda's, as shown in Prop. 10 of Section 4. The characterization
of DEXPTIME appears in [CKS, LLS]. /k

P r o p o s i t i o n 7. 0-LAN C (E-LAN f3 A-LAN).

P r o o f . Clearly, 0-LAN _ (E-LAN N A-LAN). To prove the inequality we ex-
hibit an inherently nondeterministic CFL L such that L = E* - L is also a CFL.
Thus, by Prop. 5, L is accepted by an A-pda too.

Let L be the inherently nondeterministic language {ww R I w E •a, b}*} (see
[Hr, p. 390]). To show that T = ~* - L is also a CFL, consider the grammar:

s aSa I bSb I aAb I I b
A ~ a A] b A] A A

P r o p o s i t i o n 8. (E-LAN U A-LAN) C (E,A)-LAN.

P r o o f . Clearly, (E-LAN kJ A-LAN) ___ (E,A)-LAN. We exhibit a language L
that is accepted by an (E,A)-pda, but is not a CFL or the complement of one.
Define L = {a 2" I n > 0}. The (E,A)-pda for L is illustrated in Fig. 2. It pushes

the first half of the input word onto the stack by guessing the middle. It then
checks, using a V-state, if the length of the rest of the word is equal to the length
of the stack, and repeats the whole process for the second half, recursively.

i

It is not too difficult to see that neither L nor L is a CFL, by using simple
pumping arguments, a

Turning to one-letter alphabets, every context-free language L _ (a)* is reg-
ular, by Parikh's theorem [Pa]. From Prop. 5 and the closure of regular sets under
completion, it follows that every A-LAN language L C {a)* is also regular. (E,A)-
LAN, on the other hand, contains one-letter languages that are non-regular.

P r o p o s i t i o n 9. There is a non-regular language (which is therefore non-
context-tree) L C {a)* that is accepted by an (E,A)-pda.

P r o o f . As in the previous proof, let L = (a ~n I n > 0}. A

4. Bounds for Deterministic and Regular Languages

The results of this section are illustrated in Fig. 3. The text deals with deterministic
languages, but all the results hold for regular languages too, since the upper bounds
obviously apply to regular languages too, and the example languages used for the
lower bounds are all, in fact, regular. We first show that C can be eliminated at
the expense of at most an exponential blowup.

P r o p o s i t i o n 10. Let ~ be any subset of {E,A}. Then

(~,C)-PDA , ~-PDA.

P r o o f . Let M be a (f ,C)-pda of size n. The proof uses a simple product
construction, as in [DH]. A configuration of a conventional pda contains the input
word, the state, the position of the head, and the contents of the stack. A config-
uration of a (f ,C)-pda differs in that instead of a single state it may be thought
of as containing a subset of atomic-states.

Accordingly, the states of the equivalent ~-pda M I are subsets of the atomic-
states of M (numbering at most 2'~), whose transitions are defined according to
those of M in the following fashion. The configuration Q~ follows Q~ in M riff Q2
follows Q1 in M, where Q~ and Q~ contain the same input word, the same head
position and the same stack as Q1, and Q2, respectively, and the states of Q~ and
Q~ represent the same subsets of atomic-states as Q1 and Q2, respectively. The
start state of M ~ and its accepting states are defined in a straightforward way as
those representing the corresponding configurations in M. A

Coro l l a ry 11. Let f be E or A. Then

C-PDA * ~-PDA ,

C-PDA) (E,A)-PDA,

(~,C)-PDA ~ (E,A)-PDA.

In contrast to the removal of the C feature, E and A cannot be removed with
any limited blowup. We prove this even for the replacement of one by the other:

P r o p o s i t i o n 12.
A-PDA - ~ E-PDA and

E-PDA --~ A-PDA.

Proof . Let g be a recursive function, and let M be a Turing machine that
starts on a tape containing 1" and ends with a tape containing 1 g(n). Let the
relevant computation sequence of M be q01 ~ }- a2 }- --- ~- ak }- qt l g(~), where qt
is the machine's final state. Let L , be the singleton {q0 in f ~ a 3 • • • ak R ~qt lg(n) ~},
where ~R is the configuration a in reverse. (For simplicity we assume that k is
even.) Then, an A-pda of size O(logn) accepts L~ as follows. It checks that each
block follows the previous one according to the rules of M. This check is carried
out using two V-branches to check the even numbered blocks in parallel with the
odd numbered ones, and each block is pushed on the stack, with the adjacent block
being checked against it for complience. This part of the A-pda is of constant size.
In parallel, the machine verifies that there are n l 's in the first block with a 0-pda
component of size O(log n), as described in the proof of Prop. 14. (There we verify
2 n occurences of 1 with a 0-pda of size O(n).)

In contrast, the smallest CNF-grammar that generates L,~ must contain at
least log(g(n)) variables. Otherwise, we could generate more words, by pumping
the derivation-tree of the single w E L, . Thus, by Prop. 3, the size of the smallest
E-pda accepting Ln must be polynomially related to log(g(n)). Carrying out the
construction for a function gt that is related to g in a similarly polynomial manner
concludes the proof.

For the second case, let Ln = E* - L~. The result then follows from Prop.
5. /k

Coro l l a ry 13. Let f be A or E, and let each of # and v be C or 0. Then

(E,A,#)-PDA ~ (~,V)-PDA,

(~,#)-PDA --~ ({E,A}- f, //)-PDA ,

(E,A)-PDA ~ 0-PDA, and

f-PDA ~ 0-PDA.

In order to establish the exponential lower bounds represented in the three
front downward vertical lines of Fig. 3, it suffices to establish the exponential lower
bounds for the two diagonals representing the simulation of a C-pda by an E-pda
and an A-pda:

P r o p o s i t i o n 14. Let ~ be E or A. Then

C-PDA ~ ~ ~ - P D A .

Proof . Let Ln = {12"}. There is a @-pda M that uses n + 1 stack-symbols,
s0 , . . . , sn , and accepts L~. First, it pushes 8~ onto the stack. Subsequently, if it
sees si, ~ _> 1, at the top of the stack it replaces it by s~-lsi-1. This continues until
M sees s0 at the top of the stack, at which time it pops so and reads one character
in the input-word. When the stack is empty, all 2 n characters of the input-word
have been read.

We can now exhibit a C-pda of size O(log(n)) that does the same. It uses
only two stack-symbols a and b, encoding si by aib. Identifying aib at the top of
the stack, popping it off and pushing two sequences of the form ai-lb instead, can
be carried out using the ability of the statecharts to count up to n with O(log(n))
states [DH].

In order to show that the smallest E-pda accepting L~ must be of size poly-
nomially related to n (i.e., one of the two is polynomial in the other), it suffices to
show th.at the smallest CNF-grammar generating it is at least of size n; see Prop.
3. Indeed, the smallest CNF grammar that generates Ln must contain at least n
non-terminals. Otherwise, in the derivation-tree of the word 12'` there would be
a path of length at least n, which would then have to contain two occurrences of
some nonterminal. We could then apply a pumping argument to generate other
words that are not in the language.

For the case of ~ = A, let L,~ = ~* - L~. A C-pda accepting Ln is similar
to the previous one for Ln. However, the size of the smallest A-pda accepting itt
must be polynomially related to n, by Prop. 5. A

C o r o l l a r y 15. Let ~ be E, A or 0. Then

(~ ,C) -PDA ~ ~-PDA .

We conjecture that the exponential lower bounds apply not only to the re-
placement of C by E or A, but also to the replacement of C by both E and A, as
was proved in [Hi] for finite automata (see [DH]):

Conjecture 16. C-PDA ~ (E , A) - P D A .

fThis is an example of a case in which we blur the distinction between acceptance by empty

stack and by final state. The differences have no effect on the results.

]0

The example that prompted us to make this conjecture is the language

L,~ = {w#wl]w C {0, 1} ~, wl E {0, 1, #}*, w appears in wl exactly 2 n times}

On the one hand there is a linear-sized C-pda accepting Ln. It keeps the first w in
n orthogonal yes/no components for comparison with subsequent words, and uses
a counter of size O(n) to count the number of subwords equal to w. (Note that
the stack is not used at all.) On the other hand, we conjecture that any (E,A)-
pda accepting Ln must be of exponential size. Here is why. M has to compare
and count the occurrences of w along a single path, and, since E and A have the
effect of splitting the computation into separate paths, it would appear that these
features cannot help in reducing the size. As to exploiting the stack, if M uses it
for either comparing or counting, it appears that the other of these tasks cannot
be supported at the same time by the stack unless 2 ~ stack-symbols or 2 ~ states
are used.

If the conjecture is true, then obviously if ~ is E, A or (E,A), we also have:

(~, C)-PDA .~ (F,,A)-PDA.

5. Bounds for Finite Languages

The results of this section are illustrated in Fig. 4.

The exponential upper bounds for simulating (C,~}-pda's by ~-pda's clearly
apply to finite languages too. However, nondeterminism can be eliminated with a
double-exponential blowup, so that the gap between E and 0 is not unlimited, as
it was in the case of deterministic languages. To establish this we first show how
to replace E by C with an exponential blowup?:

P r o p o s i t i o n 17.
E-PDA ~/ C-PDA.

Proof . Let M be an E-pda of size n. Without loss of generality, assume that
M is moderate. The stack can expand up to the number of transition rules of M
(which is less than n), otherwise some rule would be used at least twice, which
would cause M to accept an infinite number of words.

From M we can obtain an (E,C)-finite-automatoI1 M ~ by adding orthogonal
state components for simulating the contents of the stack, and another compo-
nent describing the height of the stack at any given moment, and changing the

?Recall the use of an f subscript on the arrows, indicating finite languages.

11

transitions accordingly. M I is of size polynomial in n. We now simulate M t by a
C-automaton of exponential size, by removing the nondeterminism as in [DH]. /~

C o r o l l a r y 18. Let ~ be 0 or C. Then

(F,,~)-PDA "" >y ~-PDA.

(E,~)-PDA "" ,f (A,~)-PDA.

C o r o l l a r y 19. Let ~ be 0 or A. Then

(E,C)-PDA "">f ~-PDA.

In contrast to the double-exponential transition from E to A, the reverse
transition is of unlimited complexity:

P r o p o s i t i o n 20.
A-PDA ---~.f E-PDA.

P r o o f . The proof is the same as the analogous proof in Prop. 12, since the
language

L~ : {q01r~2R~.-. aR~qll g(r~)~}

used therein is obviously finite. (In contrast, when simulating an E-pda by an
A-pda in Prop. 12 we used the complement, Ln' which is not finite.) ~,

C o r o l l a r y 21. Let ~1 be 0 or C, and let ~2 be any subset of {E,C}. Then

(A, ~I)-PDA - ~ f ~2-PDA .

It is of particular interest that, although nondeterminism can be eliminated
with a limited blowup (Corollary 18), this is not true in the presence of the A
feature:

P r o p o s i t i o n 22.
(E,A)-PDA - -~f A-PDA.

P r o o f . Let g be any recursive function. Let T be a Turing machine that, for
each n > 0, computes g(n) according to the computation sequence represented by
the following word:

r~ R

where ql is the machine's final state. Let

L . = {~ lSw25w31 for ~ < i < a, Iw~l < I~'-I, w~ = ~,,~ or '~3 = , ~ . , a n d w2 # ~ , J

U (" 1 ~ " ~ I I"~t -< 21'~-f fo~ i = ~,2, "1 = ~ . or , .~ = ,~,~.}

12

We now construct a small (E,A)-pda M that accepts Ln. M guesses nondeter-
ministically whether the input-word w contains one '$' symbol or two. Say it has
decided the latter, so that the input word should be w = wl$w2$ws. M now
guesses which of wl or w3 must equal an. Say it decides wl. It then verifies the
equality wl = a , , using parallelism to check that each pair of blocks separated
by ~'s in fact represents two successive configurations of the Turing machine T,
laid back to back, and it verifies the inequality w2 # an, using nondeterminism
to find a pair of such blocks that do not thus represent successive configurations.
Both these checks can be carried out with an (E,A)-pda of constant size, using the
stack to arrive at the corresponding point in the second of the two blocks being
checked. We also have to check, in parallel to the verification of wl = an, that
the initial sequence of l ' s is of length n. This is carried out by a deterministic
component of logarithmic size, as in the proofs of Props. 12 and 14. In parallel to
these activities, we use the stack to verify that IT21, lwsl < la,~l. This is done by
pushing wl, which is really just an , onto the stack, and then comparing its length
to the lengths of w2 and ws, in parallel. The size of this (E,A)-pda component is
also constant. Hence, the total size of M is only O(log n).

We now show that the smallest A-pda accepting Ln must be polynomially
related to log(g(n)). By Props. 3-5, it suffices to show that there cannot be a
CNF grammar G generating L , with less than log(g(n))/2 variables. Indeed, let
k(G) be the constant from the iteration theorem (see, e.g., [Hr, p. 186]). We have
k(G) < g(n). Let w = a,~anan = wl$w2$ws e Ln, and let us mark the set
of positions of w2 in w. Obviously, Iw~l = lan] > g(n) >_ k(G). Hence, by the
theorem, there is a partit ion v l , . . . , v 5 of w such that: Vi > 0, vlvi2v3vi4v s E Ln,
where v2 ¢ A or v4 ¢ A, and is taken entirely from w2. Assume it is v2. If v4 is
empty, or if it is not empty and is taken entirely from w2, then in w ~ . ~ ?jl?32?)3V4Vb,0 0
we have wx = w3 -- an , w2 ~ an, and]w2t <]anl. Thus w' e Ln. Therefore,
w ~ ~ Ln, which is a contradiction. If v4 ¢ 3. and is taken entirely from w3, then in
W ! = 'olvOv3vOv5 we have wl = an, w~ # an, w3 # an, and]w2],]w3] < tan]. Thus
w ~ E Ln again. Finally, if v4 contains a '$', then w I = VlV°vsv°v s contains only
one '$'. Thus w' = wl$w2, where wl = an and iw~l < 2 i a , I. Therefore, w' E Ln,
which, once again, is a contradiction. £x

C o r o l l a r y 23. Let ~x and ~2 be either C or 9. Then

(E,A,~I)-PDA - -~y (A,~2)-PDA.

Here, too, we have exponential lower bounds on replacing C by E or A, and
the proof is a finitary version of the proof of the analogous Prop. 14:

P r o p o s i t i o n 24. Let ~ be E or A. Then

C - P D A >? ~ - P D A .

P r o o f . Let Ln = {1 k I k _< 2n}. The C-pda accepting Ln is similar to that
of the proof of Prop. 14, except for the final states. All the states will be final,

13

except one "sink" state, that will be reached if the stack empties before the entire
input-word has been read.

In contrast, we now show that any CNF grammar that generates L,~ or Ln
contains at least n variables. By Props. 3-5, this will complete the proof.

Assume that there is such a CNF grammar with less than n variables. Then in
the derivation tree of 12" (or 12"+1 , respectively) in Ln (or Ln, respectively), there
would be a path of length at least n. Thus, this path would contain some variable
appearing at least twice, and we could pump the derivation-tree of 12", accepting
other words that are not in Ln. Similarly, we could pump-out the derivation tree
of 12"+1 in order to get a smaller word which is not in L---~. LX

Coro l l a ry 25. Let ~ be E, A or 9. Then

(~,C)-PDA . ,] ~-PDA.

As in the previous section, we have the following conjecture:

C o n j e c t u r e 26.
C-PDA . >$ (E,A)-PDA.

Here now is a lower bound that establishes the tightness of the upper bounds
of Prop. 17 and Corollaries 18 and 19:

P r o p o s i t i o n 27.
(E,C)-PDA ...,S A-PDA.

Proof . Let

Ln = {w t w E {O,I,$}*, and e i t h e r i w i < 4 n + 3 o r

(w = wl$w2$w3$w4, IT] = 4n + 3, [wl # w2 or w2 # w3 or ws # W4])}

We shall first exhibit an (E,C)-pda M of size O(log log n) that accepts Ln. By
the proof of Prop. 14 we can count up to n with a C-pda of size O (log log n). Thus,
a C-pda of size O(loglogn) can check if IT[= 4n + 3 or Iwl < 4n + 3. To check
the inequalities in the former case, M uses nondeterminsm to guess the offending
bit, and then uses the O(log log n) counting ability to reach the corresponding bit
in the next word and check complience (see [DH]). This is done in parallel to the
equality check, IwI = 4n + 3.

In contrast, we now show that any CNF-grammar that generates Ln must
contain at least 2 n variables. As before, the desired result will follow from Props.
3-5.

Assume that G is a CNF-grammar for L~, with less than 2 n variables. Let
T1, T . • .. 2 be the derivation-trees of the 2 n words in the set:

A,~ = {wl$w2$w3$w4 I wi C {O, 1}", f o r l < i < 4 , a n d w l = w 2 = w 3 = w 4 } .

14

Notice that An C Ln. Since G is in Chomsky normal form, each node of Ti,
1 < i < 2 n, splits into two nodes at most. Assume the root S splits into A and B.
If A (or B) generates a part of Wl (or w4), but not all of it, we refer to B (or A)
as a root, and continue recursively until, for the first time, we reach a variable V1
that splits into V2 and Vs so that V2 (or Vs) generates the whole of w2 (or ws) and
do not generate any character from w4 (or wl). Thus, each tree Ti, 1 < i < 2 n,
has a least-common-ancestor of w2 or ws, which does not generate any character
of w4 or wl, respectively. We denote these nodes by B~, 1 < i < 2 n, and the words
generated from them by w(B¢), 1 < i < 2 '~. Since there are less than 2 '~ variables in
G, there must exist 1 _< i, j _< 2 '~, i ¢ j , such that , B~ = B i. If Iw(Bi)l < Iw(Bj)I,
then by replacing w(Bj) by w(Bi) in the word wjwiwi$wi, the g rammar would
generate this new word, which is of length less than 4n + 3, and is thus not in L~
(since it is in Ln). If the lengths of w(Bi) and w(Bi) are equal but the positions
of the '$' in them are not, then by exchanging them we also obtain words that are
not in L--~. Otherwise, if Iw(Bi)] = Iw(Bj)l and the positions of the '$' in them are
equal, then, by replacing w(Bi) by w(Bi) in wiwjwi$wj, we obtain either the
word wj$w~$wi$w '~ or the word w'$wi$w"$wj, with w', w" E {0,1} ~ (depending
on wMch of w2 or w~ is generated by Bj in wj$wjSwj$wj), both of which are not
in Ln. A

C o r o l l a r y 28. Let f l be C or 0 and ~2 be A or 0. Then

(E,C)-PDA
(E, fl)-PDA

E-PDA

... > f 0-PDA ,
• . ' f (~1, ~2)-PDA,

. >f (C, ~2)-PDA .

6. Conclusion

As mentioned in the introduction, our results provide further evidence of the
inherent exponential power of bounded cooperative concurrency (see [Ha3]). As
shown, the C feature retains its exponential power in all cases we have considered
on the pushdown au tomata level, although E and A are much more powerful. In
fact, one might argue tha t E and A are ~oo powerful as features for modelling
parallelism in pushdown automata. They capture more languages than the basic
version of deterministic machines, and provide unlimited (and one might add,
unreasonable) power of succinctness when restricted to the class of deterministic
languages. The situation for finite languages is less symmetric, and somewhat more
difficult, as shown in Section 5.

We plan to carry out a similar investigation of pushdown au tomata on infinite
words and on trees.

15

References

[CKS] C]~andra, A.K., D. Kozen, and L. J. Stockmeyer, "Alternation", J. Assoc.
Comput. Math. 28 (1981), 114-133.

[DH] D:rusinsky, D. and D. Harel, "On the Power of Bounded Concurrency I: The
Finite Automata Level", submitted, 1989. (Preliminary version appeared
as: "On the Power of Cooperative Concurrency", Proc. Concurrency '88,
Lecture Notes in Computer Science 335, Springer-Verlag, New York, 1988,
pp. 74-103.)

[Hall Harel, D., "Statecharts: A Visual Formalism for Complex Systems", Sci. of
Comput. Prog. 8 (1987), 231-274.

[Ha2] Harel, D., ~On Visual Formalisms", Comm. Assoc. Comput. Math. 31
(1988), 514-530.

[Ha3] Harel, D., "A Thesis for Bounded Concurrency", Proc. l~th Syrup. on
Math. Found. of Comput. Sci., Lecture Notes in Computer Science, Vol.
379, Springer-Verlag, New York, 1989, pp. 35-48.

[HRV] Harel, D., R. Rosner and M. Vardi, "On the Power of Bounded Concur-
rency IH: Reasoning about Programs", Proc. 5th IEEE Symp. on Logic in
Computer Science, to appear, 1990.

[Hr] Harrison, M. A., Introduction to Formal Language Theory, Addison-Wesley,
Reading, MA, 1978.

[Hi] Hirst, T., "Succinctness Results for Statecharts", M.Sc. Thesis, Bar-Ilan
University, Ramat Gan, Israel, 1989 (in Hebrew).

[Ho] Hoare C.A.R, "Communicating Sequential Processes", Comm. Assoc. Corn-
put. Maeh. 21, (1978), 666-677.

[HU] Hopcroft, J. E., and J. D. Ullman, Introduction to Automata Theory, Lan-
guages, and Computation, Addison-Wesley, Reading, MA, 1979.

ILLS] Ladner, R. E., R. J. Lipton and L. J. Stockmeyer, "Alternating Pushdown
Automata", Proc. 19th IEEE Syrup. on Found. of Comput. Sci., 1978, pp.
92-106.

[MF] Meyer, A. R. and M. J. Fischer, "Economy of Description by Automata,
Grammars, and Formal Systems", Proc. 12th IEEE Syrup. on Switching
and Automata Theory, 1971, pp. 188-191.

[Mi] Milner, R., A Calculus of Communicating Systems, Lecture Notes in Com-
puter Science, Vol. 94, Springer-Verlag, New York, 1980.

[Pa] Parikh, R. J., "On Context-Free Languages", J. Assoc. Comput. Math. 13
570-581.

[Re] Reisig, W., Petri Nets: An Introduction, Springer-Verlag, Berlin, 1985.

16

(alternating
E~A~C statechart)

E,C--J~~ . 1 ~ ,c

(V-automaton)
{NFA)

(DFA)

Figure I. Results for finite automata (see [DH])

[)~,A,A

F i g u r e 2. An (E,A)-pda for L -- {a 2~ J r~ > O}

17

(alternating
E,A,C pushdown

statechart)
!

Z \ I \ , ~ I ,, /
/ J \ "o. I / •

T . ' / J " ~"'-~\',. I ~ /// I
I I • "-.~\ I / \ J

(p~-a~ " : ' ' ' ~ * ' ~ ¥ (V~pda)
@

(dpda)

Figure 3. Summary of results for deterministic and regular languages

E,A,C

,' / "1-,-."%,.'--,.: ,,

(V-pda)
(pda)

(dpdo)

Figure 4. Summary of results for finite languages

